
 

132 Digital Fundamentals

 

cations in which only microamps of current are consumed. To further reduce cost and complexity,
the microcontrollers contain on-board clock drivers that work with a variety of external frequency-
reference components. Quartz crystals are supported, as they are very accurate references. In very
small systems wherein cost and size are absolutely paramount concerns, and absolute frequency ac-
curacy is not a concern, less-expensive and smaller frequency references can be used with a PIC
microcontroller. One step down from a crystal is a 

 

ceramic resonator, 

 

which functions on a similar
principle but with lower accuracy and cost. Finally, if the operating frequency can be allowed to vary
more substantially with temperature, voltage, and time, a resistor/capacitor (RC) oscillator, the
cheapest option, is supported. Tiny surface mount RC components take up very little circuit board
area and cost pennies.

The original 16C5x family incorporates only the most basic of peripherals: power-on-reset, an
eight-bit timer/counter, and a 

 

watchdog timer

 

. A power-on reset circuit ensures that the microcon-
troller reliably begins operation when power is applied by automatically controlling an internal reset
signal. On most microprocessors, reset is purely an external function. A 

 

watchdog 

 

timer can be con-
figured to automatically reset the microcontroller if the system develops an unforeseen fault that
causes the software to “crash.” The watchdog functions by continuously counting, and software
must periodically reset the counter to prevent it from reaching its terminal count value. If this value
is reached, the internal reset signal is asserted. Under normal circumstances where software is func-
tioning properly, it resets the watchdog timer with plenty of time to spare. However, if the software
crashes, it will presumably not be able to reset the watchdog, and a system reset will soon follow.
The watchdog timeout period is configurable from milliseconds to seconds. When using a watchdog,
the timeout period is chosen to be long enough so that software can reliably reset the counter to pre-
vent accidental reset, yet short enough to catch a fault and reset the system before serious problems
result.

The PIC microcontroller’s RISC instruction set obeys the tenets of the general RISC style: ac-
complish the same task with more simple instructions instead of fewer complex ones. Fewer types of
simple instructions require less processing logic within the chip. As an example, there are just two
branch instructions: 

 

CALL 

 

and 

 

GOTO

 

. 

 

CALL 

 

is an unconditional branch-to-subroutine that places
the current PC onto the stack. It is the programmer’s responsibility to not nest subroutines more than
two deep to avoid overflowing the stack. 

 

GOTO

 

 simply loads a new value into the PC. To implement
conditional branches, these instructions are paired with one of four instructions that perform an ac-
tion and then skip the following instruction if a particular result is true. 

 

INCFSZ

 

 and 

 

DECFSZ

 

 incre-
ment or decrement a designated register, respectively, and then skip the following instruction if the
result is zero. 

 

BTFSC 

 

and 

 

BTFSS 

 

test a specified bit in a register and then skip the following in-
struction if the bit is 0 or 1, respectively. Using the first pair of instructions, a loop could be written
as shown in Fig. 6.8.

Assembly languages commonly offer the programmer a means of representing numeric values
with alphanumeric labels for convenience. Here, the loop variable 

 

COUNT

 

 is set to address 0 with an

 

equate 

 

directive that is recognized and processed by the assembler. 

 

MOVWF

 

 transfers the value in the

COUNT EQU 0 ; define COUNT at address 0  

MOVLW 0x09 ; 9 loop iterations 
MOVW F COUNT ; iteration tracking register 

LOOP_START <loop instructions> ; body of loop 
DECFSZ COUNT,1 ; done with loop yet? 

 GOTO LOOP_START ; non-zero, keep going... 
 <more instructions> ; zero, loop is done... 

FIGURE 6.8 16C5x assembly language loop.

 

-Balch.book  Page 132  Thursday, May 15, 2003  3:46 PM



 

Instructive Microprocessors and Microcomputer Elements 133

 

working register into a particular location in the register file. In this example, the 

 

GOTO

 

 instruction is
executed each time through the loop until 

 

COUNT

 

 is decremented to 0. (The operand “1” following

 

COUNT

 

 in 

 

DECFSZ

 

 tells the microcontroller to place the decremented result back into 

 

COUNT

 

 rather
than into the working register.) At this point, 

 

GOTO

 

 is skipped, because the result is 0, causing the
microcontroller to continue executing additional instructions outside of the loop. 

The second pair of skip instructions, 

 

BTFSC

 

 and 

 

BTFSS

 

, directly supports the common situation
in which the microcontroller reads a set of flag bits in a single byte and then takes action based on
one of those bits. Such bit-testing instructions are common in microcontrollers by virtue of their in-
tended applications. Some generic microprocessors do not contain bit-testing instructions, requiring
software to isolate the bit of interest with a logical 

 

mask 

 

operation. A mask operation works as fol-
lows with an AND function, assuming that we want to isolate bit 5 of a byte so as to test its state:

Here, the mask prevents any bit other than bit 5 from achieving a 1 state in the final result. This
masking operation could then be followed with a conditional branch testing whether the overall re-
sult was 0 or non-0. In the PIC architecture, and most other microcontrollers, this process is per-
formed directly with bit-test instructions.

Masking also works to set or clear individual bits but, here again, the PIC architecture contains
special instructions to optimize this common microcontroller function. Using the above example, bit
5 can be set, regardless of its current state, by ORing the data byte with the same mask.

The mask ensures that only bit 5 is set, regardless of its current state. All other bits propagate
through the OR process without being changed. Similarly, an individual bit can be cleared, regard-
less of its current state, with an inverse AND mask:.

Here, all bits other than bit 5 are ANDed with 1, propagating them through to the result. Bit 5 is
ANDed with 0, unconditionally forcing it to a 0. Rather than having to load a mask and then execute
a logical instruction, the PIC architecture contains two instructions to clear and set arbitrary bits in a
specified register: 

 

BCF 

 

and 

 

BSF

 

, respectively.

 

1 0 1 1 0 1 1 1 Byte to test

0 0 1 0 0 0 0 0 Mask

AND 0 0 1 0 0 0 0 0 Bit 5 isolated

1 0 1 1 0 1 1 1 Starting byte

0 0 1 0 0 0 0 0 Mask

OR 0 0 1 0 0 0 0 0 Result

1 0 1 1 0 1 1 1 Starting byte

1 1 0 1 1 1 1 1 Mask

AND 1 0 0 1 0 1 1 1 Result

 

-Balch.book  Page 133  Thursday, May 15, 2003  3:46 PM




